Inhibition of methadone and buprenorphine N-dealkylations by three HIV-1 protease inhibitors.
نویسندگان
چکیده
Ritonavir, indinavir, and saquinavir, all human immunodeficiency virus-1 protease inhibitors with a potent antiviral effect during triple therapy, are extensively metabolized by liver cytochrome P450 3A4. As this P450 isoform is involved in the metabolism of about 50% of drugs, coadministration of protease inhibitors with other drugs may lead to serious effects due to enzyme inhibition. Among these drugs, methadone and buprenorphine, both metabolized by P450 3A4, are potential candidates to drug interactions. In this study, metabolic interactions between these protease inhibitors and methadone or buprenorphine were studied in vitro in a panel of 13 human liver microsomes. Ritonavir was the most potent competitive inhibitor with Ki about 50 and 20 nM for methadone and buprenorphine metabolisms, respectively. Indinavir and saquinavir also inhibited methadone N-demethylation (Ki about 3 and 15 microM, respectively) and buprenorphine N-dealkylation (Ki about 0.8 and 7 microM, respectively). The rank order of inhibition potency against metabolism of methadone and buprenorphine was ritonavir > indinavir > saquinavir. There is obvious potential for clinically significant drug interactions, particularly with ritonavir. In brief, caution should be advised if human immunodeficiency virus-1 protease inhibitors are coadministered with methadone and buprenorphine.
منابع مشابه
Design of new potent HTLV-1 protease inhibitors: in silico study
HTLV-1 and HIV-1 are two major causes for severe T-cell leukemia disease and acquired immune deficiency syndrome (AIDS). HTLV-1 protease, a member of aspartic acid protease family, plays important roles in maturation during virus replication cycle. The impairment of these proteases results in uninfectious HTLV-1virions.Similar to HIV-1protease deliberate mutations that confer drug resistance on...
متن کاملResistance mechanism of human immunodeficiency virus type-1 protease to inhibitors: A molecular dynamic approach
Human immunodeficiency virus type 1 (HIV-1) protease inhibitors comprise an important class of drugs used in HIV treatments. However, mutations of protease genes accelerated by low fidelity of reverse transcriptase yield drug resistant mutants of reduced affinities for the inhibitors. This problem is considered to be a serious barrier against HIV treatment for the foreseeable future. In this st...
متن کاملTHE DESIGN, MODELING AND EVALUATION OF POTENTIAL HIV PROTEASE INHIBITORS USING BLITZ, AN INTERACTIVE COMPUTER GRAPHICS WORKING TOOL
Several nonpeptide small molecules were designed as potential inhibitors of HIV protease and their structures were constructed by computer-aided molecular modeling and docked iwo the active site of HIV protease. Models of the complexes of inhibitors and the HIV protease were refined using nonbonded and H-bonding terms. The refined energy of selected complexes showed that the designed inhib...
متن کاملScreening Efficacy of Available HIV Protease Inhibitors on COVID-19 Protease
Background and Aim: Advent of COVID-19 attracted the attentions of researchers to develop drugs for its treatment. Besides efforts on developing new drugs, screening available drugs for efficacy on COVID-19 could be an urgent action of initiating its pharmacotherapy. In this study, efficacy of HIV protease inhibitors on COVID-19 protease has been examined. Methods: Molecular docking based scree...
متن کاملOne-pot Synthesis of Amidoalkyl Naphthol Derivatives as Potential Nucleoside Antibiotics and HIV Protease Inhibitors using Nano-SnO2 as an Efficient Catalyst
An efficient three-component one-pot synthesis of 1-amidoalkyl-2-naphthols from 2-naphthol, aldehydes, and acetamide using nano-SnO2as catalyst is described. The reactions were carried out at 80oC under water-solvent media. The structures of the compounds were characterized by IR, 1HNMR, 13C-NMR, and Mass spectra and by elemental analysis. The advantages of the effective meth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 26 3 شماره
صفحات -
تاریخ انتشار 1998